3.22 \(\int \frac{A+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx\)

Optimal. Leaf size=112 \[ \frac{2 (5 A+7 C) \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right ) \sqrt{b \sec (c+d x)}}{21 b^4 d}+\frac{2 (5 A+7 C) \sin (c+d x)}{21 b^3 d \sqrt{b \sec (c+d x)}}+\frac{2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}} \]

[Out]

(2*(5*A + 7*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(21*b^4*d) + (2*(5*A + 7*C)*
Sin[c + d*x])/(21*b^3*d*Sqrt[b*Sec[c + d*x]]) + (2*A*Tan[c + d*x])/(7*d*(b*Sec[c + d*x])^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0896406, antiderivative size = 112, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {4045, 3769, 3771, 2641} \[ \frac{2 (5 A+7 C) \sin (c+d x)}{21 b^3 d \sqrt{b \sec (c+d x)}}+\frac{2 (5 A+7 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \sec (c+d x)}}{21 b^4 d}+\frac{2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(7/2),x]

[Out]

(2*(5*A + 7*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(21*b^4*d) + (2*(5*A + 7*C)*
Sin[c + d*x])/(21*b^3*d*Sqrt[b*Sec[c + d*x]]) + (2*A*Tan[c + d*x])/(7*d*(b*Sec[c + d*x])^(7/2))

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{A+C \sec ^2(c+d x)}{(b \sec (c+d x))^{7/2}} \, dx &=\frac{2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}+\frac{(5 A+7 C) \int \frac{1}{(b \sec (c+d x))^{3/2}} \, dx}{7 b^2}\\ &=\frac{2 (5 A+7 C) \sin (c+d x)}{21 b^3 d \sqrt{b \sec (c+d x)}}+\frac{2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}+\frac{(5 A+7 C) \int \sqrt{b \sec (c+d x)} \, dx}{21 b^4}\\ &=\frac{2 (5 A+7 C) \sin (c+d x)}{21 b^3 d \sqrt{b \sec (c+d x)}}+\frac{2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}+\frac{\left ((5 A+7 C) \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{21 b^4}\\ &=\frac{2 (5 A+7 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \sec (c+d x)}}{21 b^4 d}+\frac{2 (5 A+7 C) \sin (c+d x)}{21 b^3 d \sqrt{b \sec (c+d x)}}+\frac{2 A \tan (c+d x)}{7 d (b \sec (c+d x))^{7/2}}\\ \end{align*}

Mathematica [A]  time = 0.691509, size = 79, normalized size = 0.71 \[ \frac{\frac{4 (5 A+7 C) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{\sqrt{\cos (c+d x)}}+2 \sin (c+d x) (3 A \cos (2 (c+d x))+13 A+14 C)}{42 b^3 d \sqrt{b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Sec[c + d*x]^2)/(b*Sec[c + d*x])^(7/2),x]

[Out]

((4*(5*A + 7*C)*EllipticF[(c + d*x)/2, 2])/Sqrt[Cos[c + d*x]] + 2*(13*A + 14*C + 3*A*Cos[2*(c + d*x)])*Sin[c +
 d*x])/(42*b^3*d*Sqrt[b*Sec[c + d*x]])

________________________________________________________________________________________

Maple [C]  time = 0.265, size = 241, normalized size = 2.2 \begin{align*} -{\frac{2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{2} \left ( -1+\cos \left ( dx+c \right ) \right ) }{21\,d \left ( \sin \left ( dx+c \right ) \right ) ^{3} \left ( \cos \left ( dx+c \right ) \right ) ^{4}} \left ( 5\,iA\sin \left ( dx+c \right ){\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) \sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}+7\,iC\sin \left ( dx+c \right ){\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) \sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}-3\,A \left ( \cos \left ( dx+c \right ) \right ) ^{4}+3\,A \left ( \cos \left ( dx+c \right ) \right ) ^{3}-5\,A \left ( \cos \left ( dx+c \right ) \right ) ^{2}-7\,C \left ( \cos \left ( dx+c \right ) \right ) ^{2}+5\,A\cos \left ( dx+c \right ) +7\,C\cos \left ( dx+c \right ) \right ) \left ({\frac{b}{\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(7/2),x)

[Out]

-2/21/d*(cos(d*x+c)+1)^2*(-1+cos(d*x+c))*(5*I*A*sin(d*x+c)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(cos(d
*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+7*I*C*sin(d*x+c)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(
1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-3*A*cos(d*x+c)^4+3*A*cos(d*x+c)^3-5*A*cos(d*x+c)^2-7
*C*cos(d*x+c)^2+5*A*cos(d*x+c)+7*C*cos(d*x+c))/sin(d*x+c)^3/cos(d*x+c)^4/(b/cos(d*x+c))^(7/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + A}{\left (b \sec \left (d x + c\right )\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)/(b*sec(d*x + c))^(7/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sqrt{b \sec \left (d x + c\right )}}{b^{4} \sec \left (d x + c\right )^{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + A)*sqrt(b*sec(d*x + c))/(b^4*sec(d*x + c)^4), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)**2)/(b*sec(d*x+c))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + A}{\left (b \sec \left (d x + c\right )\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(b*sec(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)/(b*sec(d*x + c))^(7/2), x)